Get Round Perform 2
Retrieve statistical metrics including minimum, maximum, and standard deviation for all auction rounds
STATISTICAL ANALYSIS
Round Performance 2
Advanced statistical metrics with minimum, maximum, and standard deviation data for comprehensive auction round analysis.
Advanced Analytics
This query provides statistical distribution metrics essential for variance analysis, outlier detection, and data quality monitoring.
Overview
The getRoundPerform2
query retrieves advanced statistical metrics for each auction round, including minimum value, maximum value, and standard deviation. These metrics are crucial for understanding data distribution, identifying anomalies, and performing sophisticated analytics.
GraphQL Schema
query {
getRoundPerform2: [RoundPerform2]
}
Return Type
RoundPerform2 Object
roundNumber
Int!The unique identifier for the auction round. Sequential numbering starting from 1.
min
Float!The minimum value observed in the round. Useful for identifying lower bounds and potential outliers.
max
Float!The maximum value observed in the round. Useful for identifying upper bounds and peak performance.
std
Float!Standard deviation measuring data dispersion. Higher values indicate greater variability in round performance.
Example Usage
Query Request
query GetStatisticalMetrics {
getRoundPerform2 {
roundNumber
min
max
std
}
}
Successful Response
{
"data": {
"getRoundPerform2": [
{
"roundNumber": 1,
"min": 0.01,
"max": 0.12,
"std": 0.025
},
{
"roundNumber": 2,
"min": 0.03,
"max": 0.18,
"std": 0.032
},
{
"roundNumber": 3,
"min": 0.05,
"max": 0.25,
"std": 0.045
},
{
"roundNumber": 4,
"min": 0.08,
"max": 0.35,
"std": 0.058
},
{
"roundNumber": 5,
"min": 0.12,
"max": 0.50,
"std": 0.072
}
]
}
}
Statistical Insights
The example demonstrates increasing standard deviation over rounds, indicating growing volatility and wider price ranges as the auction progresses.
Chart Integration Examples
Statistical Visualization Techniques
📊
Box Plot / Candlestick Chart
Visualize min, max, and standard deviation using box plots to show statistical distribution and identify outliers.
Recharts Candlestick
D3.js Box Plot
Plotly Box
📈
Range Area Chart
Display min-max range as shaded areas to visualize the spread and volatility across rounds.
Recharts AreaChart
Chart.js Fill
ApexCharts Range
🎯
Standard Deviation Line Chart
Plot standard deviation progression to track volatility trends and data consistency over time.
Chart.js Line
Recharts LineChart
📉
Error Bars Chart
Add error bars to show variance and confidence intervals based on standard deviation values.
Recharts ErrorBar
Plotly Error Bars
Implementation Examples
React + Recharts Range Chart
import { AreaChart, Area, XAxis, YAxis, CartesianGrid, Tooltip, Legend } from 'recharts';
import { useQuery, gql } from '@apollo/client';
const GET_ROUND_PERFORM_2 = gql`
query GetStatisticalMetrics {
getRoundPerform2 {
roundNumber
min
max
std
}
}
`;
function StatisticalRangeChart() {
const { data, loading } = useQuery(GET_ROUND_PERFORM_2);
if (loading) return <div>Loading statistical data...</div>;
// Transform data to show range
const chartData = data.getRoundPerform2.map(round => ({
round: `Round ${round.roundNumber}`,
range: [round.min, round.max],
min: round.min,
max: round.max,
std: round.std
}));
return (
<AreaChart width={800} height={400} data={chartData}>
<CartesianGrid strokeDasharray="3 3" />
<XAxis dataKey="round" />
<YAxis label={{ value: 'Value Range', angle: -90, position: 'insideLeft' }} />
<Tooltip />
<Legend />
<Area
type="monotone"
dataKey="max"
stackId="1"
stroke="#f59e0b"
fill="#fef3c7"
name="Maximum"
/>
<Area
type="monotone"
dataKey="min"
stackId="2"
stroke="#d97706"
fill="#fbbf24"
name="Minimum"
/>
</AreaChart>
);
}
Standard Deviation Volatility Chart
import { Line } from 'react-chartjs-2';
function VolatilityChart({ data }) {
const chartData = {
labels: data.getRoundPerform2.map(r => `Round ${r.roundNumber}`),
datasets: [
{
label: 'Standard Deviation (Volatility)',
data: data.getRoundPerform2.map(r => r.std),
borderColor: 'rgb(245, 158, 11)',
backgroundColor: 'rgba(245, 158, 11, 0.1)',
fill: true,
tension: 0.4,
pointRadius: 5,
pointHoverRadius: 7
}
]
};
const options = {
responsive: true,
plugins: {
title: {
display: true,
text: 'Round Volatility Trend (Standard Deviation)'
},
tooltip: {
callbacks: {
label: (context) => {
return `Std Dev: ${context.parsed.y.toFixed(4)}`;
}
}
}
},
scales: {
y: {
beginAtZero: true,
title: {
display: true,
text: 'Standard Deviation'
}
}
}
};
return <Line data={chartData} options={options} />;
}
Statistical Analysis Use Cases
Outlier Detection
Use min/max values and standard deviation to identify unusual bidding patterns or anomalies requiring investigation
Volatility Analysis
Track standard deviation trends to understand market stability and predict periods of high or low variability
Quality Monitoring
Monitor data quality by detecting rounds with abnormally high standard deviation or unrealistic min/max ranges
Risk Assessment
Evaluate investment risk based on price variance and volatility metrics for informed decision making
Statistical Concepts Explained
Understanding the Metrics
Minimum Value
The lowest observed value in the dataset. Important for:
- Establishing price floors or lower bounds
- Identifying potential data entry errors
- Understanding best-case scenario for buyers
Maximum Value
The highest observed value in the dataset. Important for:
- Establishing price ceilings or upper bounds
- Identifying peak performance or outliers
- Understanding worst-case scenario for buyers
Standard Deviation (σ)
Measures how spread out values are from the mean. Important for:
- Assessing data consistency and reliability
- Quantifying volatility and risk levels
- Comparing variability across different rounds
Low std (<0.03) = Stable, predictable behavior
High std (>0.07) = Volatile, unpredictable behavior
Advanced Analytics Tips
📊 Range Calculation
Calculate range: range = max - min
to understand value spread
🎯 Coefficient of Variation
Normalize volatility: CV = (std / mean) × 100
for relative comparison
🔔 Anomaly Detection
Flag outliers using: value > mean + (2 × std)
for two-sigma rule
📈 Trend Analysis
Track how standard deviation changes over rounds to predict increasing or decreasing market stability
Best Practices
⚡ Combine with Other Metrics
Use alongside RoundPerform1 data (price/volume) for comprehensive analytics and correlation analysis
🎨 Visual Clarity
Use color gradients to represent volatility levels - green for low std, yellow for medium, red for high
📊 Context Matters
Always display statistical metrics with context - what the values represent and their significance
🔍 Data Validation
Verify that min ≤ max and std ≥ 0 to catch potential API errors or data corruption